Органические полимеры — виды, состав, применение

Неорганические полимеры – термин, который приобрел известность благодаря широкому применению в литье по выплавляемым моделям. А все благодаря свойствам, которые присущи этим материалам. Но значение неорганических полимеров для человека намного шире, и сфера применения далеко выходит за рамки этой технологии.

Блок: 1/7 | Кол-во символов: 313
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Природные органические полимеры

Органические полимеры в природе образуются в животных и растительных организмах. Самые важные из них – это белки, полисахариды, нуклеиновые кислоты, каучук и другие природные соединения.

Человек давно и широко применяет органические полимеры в своей повседневной жизни. Кожа, шерсть, хлопок, шелк, меха – все это  используется для производства одежды. Известь, цемент, глина, органическое стекло (плексиглас) – в строительстве.


Органические полимеры присутствуют и в самом человеке. Например, нуклеиновые кислоты (их называют еще ДНК), а также рибонуклеиновые кислоты (РНК).

Блок: 2/3 | Кол-во символов: 611
Источник: http://lkmprom.ru/clauses/entsiklopediya/polimery-/

Что такое неорганические полимеры

Более распространены неорганические полимеры природного происхождения, содержащиеся в земной коре

Чаще всего это продукт синтеза элементов III-VI группы периодической системы Менделеева. Неорганическими они называются потому, что в основе лежат неорганические главные цепи и не имеют органические боковые радикалы. Связи появляются в результате одного из двух процессов — поликонденсация или полимеризация.

Говоря обобщенно, неорганические полимеры – это искусственно синтезированные материалы, которые пришли на смену природным. При этом создатели преследовали цель сделать их дешевле. Современные полимеры превосходят имеющиеся природные аналоги по своим характеристикам. Были созданы материалы, которыми природа не обладает вовсе. Это обеспечивает их популярность и разнообразие.

Блок: 2/7 | Кол-во символов: 823
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Свойства органических полимеров

У всех органических полимеров есть особые механические свойства:

  •  малая хрупкость кристаллических и стеклообразных полимеров  (органическое стекло, пластмассы);
  •  эластичность, то есть высокая обратимая деформация при небольших нагрузках (каучук);
  •  ориентирование макромолекул под действием механического направленного поля (производство пленок и волокон);
  •  при малой концентрации большая вязкость растворов  (полимеры вначале набухают, а потом растворяются);
  •  под действием небольшого количества реагента способны быстро изменить свои физико-механические характеристики (например, дубление кожи, вулканизация каучука).

Таблица 1. Характеристики горения некоторых полимеров

Полимеры Поведение материала при внесении в пламя и горючесть Характер пламени Запах
Полиэтилен (ПЭ) Плавится течет по каплям, горит хорошо, продолжает гореть при удалении из пламени. Светящееся, вначале голубоватое, потом желтое Горящего парафина
Полипропилен (ПП) То же То же То же
Поликарбонат (ПК) То же Коптящее
Полиамид (ПА) Горит, течет нитью Синеватое снизу, с желтыми краями Паленых волос илигорелых растений
Полиуретан (ПУ) Горит, течет по каплям Желтое, синеватое снизу, светящееся, серый дым Резкий, неприятный
Полистирол (ПС) Самовоспламеняется, плавится Ярко-желтое, светящееся, коптящее Сладковатый цветочный,с оттенком запаха стирола
Полиэтилентерефталат(ПЭТФ) Горит, капает Желто-оранжевое, коптящее Сладкий, ароматный
Эпоксидная смола (ЭД) Горит хорошо, продолжает гореть при удалении из пламени Желтое коптящее Специфический свежий(в самом начале нагревания)
Полиэфирная смола (ПН) Горит, обугливается Светящееся, коптящее, желтое Сладковатый
Поливинилхлорид жесткий (ПВХ) Горит с трудом и разбрасыванием, при удалении из пламени гаснет, размягчается Ярко-зеленое Резкий, хлористого водорода
ПВХ пластифицированный Горит с трудом и при удалении из пламени, с разбрасыванием Ярко-зеленое Резкий, хлористого водорода
Фенолоформальдегидная смола (ФФС) Загорается с трудом, горит плохо, сохраняет форму Желтое Фенола, формальдегида

Таблица 2. Растворимость полимерных материалов

Полимеры Растворители
бензин ацетон этиловый спирт вода уксусная кислота соляная кислота (конц.)
Фенолоформальдегидная смола (ФФС) НР Р Р НР НР
Эпоксидная смола (ЭД) НР Р Р НР
Полиэфирная смола (ПН) НР Р Р НР НР НР
Полиамид (ПА) НР НР НР НР Р НР
Поливинилхлорид (ПВХ) НР НР НР НР НР НР
Полистирол (ПС) НР НБ НР НР НР НР
Полиэтилен (ПЭ) НР НР НР НР НР

Таблица 3. Окраска полимеров по реакции Либермана – Шторха – Моравского

Окраска Полимеры
Слабо-розовая Феноло-формальдегидные, феноло-фурфурольные
Розовая, переходящая в красную Эпоксидные смолы
Медленно синеет, затем зеленеет Поливинилхлорид
Отсутствует, иногда коричневая Полиэфирные смолы
Отсутствует Полиэтилен, полипропилен, поликарбонат, полиамид, полистирол, полиметилметакрилат, мочевино- и меламино-формальдегидные смолы, акрило-бутадиен-стирольные пластики

Статьи по теме

Полимерные композиционные материалы

Среди большинства материалов наиболее популярными и широко известными являются полимерные композиционные материалы (ПКМ). Они активно применяются практически в каждой сфере человеческой деятельности. Именно данные материалы являются основным компонентом для изготовления различных изделий, применяемых с абсолютно разными целями, начиная от удочек и корпусов лодок, и заканчивая баллонами для хранения и транспортировки горючих веществ, а также лопастей винтов вертолетов. Такая широкая популярность ПКМ связана с возможностью решения технологических задач любой сложности, связанных с получением композитов, имеющих определенные свойства, благодаря развитию полимерной химии и методов изучения структуры и морфологии полимерных матриц, которые используются при производстве ПКМ.

Свойства полимеров

Независимо от вида и состава исходных веществ и способов получения материалы на основе полимеров можно классифици­ровать следующим образом: пластмассы, волокниты, слоистые пластики, пленки, покрытия, клеи.

Эмульсионная полимеризация

Полимеризующиеся ПАВ применяются в процессах эмульсионной полимеризации, например при превращении винилхлорида в поливинилхлорид, а также акрилатов и винилацетата в латексы для покрытий.

Мономеры полимеризации

Полимеризация — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера.

Полиакрилаты

ПОЛИАКРИЛАТЫ, полимеры эфиров акриловой к-ты общей ф-лы n. Наиб. практически важны поли-н-алкилакрилаты: при R = C2-C12 полиакрилаты-аморфные полимеры с низкой т-рой стеклования (см. табл.), при R > C12 кристаллизуются с участием боковых цепей и по внеш. виду напоминают парафины.

Блок: 3/3 | Кол-во символов: 4873
Источник: http://lkmprom.ru/clauses/entsiklopediya/polimery-/

Сополимеры


Полимеры, изготовленные из разных мономеров или химически связанных молекул разных полимеров, называют сополимерами. Например, ударопрочный полистирол является сополимером полистирол−полибутадиен.

Сополимеры различаются по строению, технологии изготовления и получаемым свойствам. На 2014 год созданы технологии:

  • статистические сополимеры, образованные цепочками, содержащими химические группы различной природы, получают путём полимеризации смеси нескольких исходных мономеров;
  • чередующиеся сополимеры характеризуются цепочками, в которых чередуются радикалы разных мономеров;
  • привитые сополимеры образуются путём прикрепления цепочек молекул второго мономера сбоку к макромолекулам, образованным из основного мономера;
  • гребнеобразными сополимерами называют привитые сополимеры с очень длинными боковыми цепочками;
  • блок-сополимеры построены из достаточно протяжённых цепочек (блоков) одного мономера, соединённых по концам с достаточно протяжёнными цепочками другого мономера.

Свойства сополимеров

Гребнеобразные сополимеры можно составить из материалов с разными свойствами, что даёт такому сополимеру принципиально новые свойства, например, жидкокристаллические.

В блок-сополимерах, составленных из компонент с разными свойствами, возникают суперрешетки, построенные из выделившихся в отдельную фазу блоков различной химической природы. Размеры блоков зависят от соотношения исходных мономеров. Так, хрупкому полистиролу добавляют устойчивость к растяжению до 40 % путём сополимеризации с 5−10 % полибутадиена, и получается ударопрочный полистирол, а при 19 % полистирола в полибутадиене материал демонстрирует каучукоподобное поведение.

Блок: 3/10 | Кол-во символов: 1655
Источник: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D1%8B

Классификация

Пока еще не сформирован четкий перечень видов, но есть несколько основных групп неорганических полимеров, которые разнятся по своей структуре. Такие материалы бывают:

  • линейными;
  • плоскими;
  • разветвленными;
  • трехмерные и т.д.

Также различают по происхождению:

  • природные;
  • искусственные.

По образованию цепей:

  • гетероцепные;
  • гомоцепные.

В отдельную категорию выделяют полимерные сетки. По своей структуре это макромолекулы пространственного строения. Это позволило обеспечить нужды широкого круга производств.

Блок: 3/7 | Кол-во символов: 534
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Виды неорганических полимеров


Асбест — один из самых распространенных полимеров. По своей структуре это тонковолоконный материал – силикат. В своем составе он включает молекулы железа, магния, кальция и натрия. Производство этого полимера относится к числу вредных для человека, но изделия из него абсолютно безопасны.

Силикон также нашел свое применение благодаря тому, что по многим характеристикам превосходит природный каучук. Прочность и эластичность обеспечивает соединение кислорода и кремния. Полисиликонсан выдерживает механические, температурные, деформационные воздействие. При этом форма и структура остается неизменной.

Карбин пришел на смену алмазу. Он также прочен, что необходимо во многих отраслях промышленности. Для этого полимера характерна способность выдерживать температуру до 5 000 ºC. Особенность – увеличение электропроводности под воздействием световых волн.

Графит известен всем, кто когда-либо брал в руки карандаш. Особенность углеводородистых полимеров – плоскостная структура. Они проводят электрические разряды, тепло, но полностью поглощают световую волну.

Также производятся полимеры, в основе которых применен селен, бор и другие элементы, что обеспечивает разнообразие характеристик.

Блок: 4/7 | Кол-во символов: 1229
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Типы

Синтетические полимеры. Искусственные полимерные материалы

Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX века, хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё в середине XIX века. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических полимеров началось в 1906 году, когда Лео Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленности сначала на основе натурального, затем — также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а также полиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х годах XX века было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан или полиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространённые герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Список замыкают так называемые уникальные полимеры, синтезированные в 60—70 годы XX века. К ним относятся ароматические полиамиды, полиимиды, полиэфиры, полиэфир-кетоны и др.; непременным атрибутом этих полимеров является наличие у них ароматических циклов и (или) ароматических конденсированных структур. Для них характерно сочетание выдающихся значений прочности и термостойкости.

Огнеупорные полимеры

Многие полимеры, такие как полиуретаны, полиэфирные и эпоксидные смолы, склонны к воспламенению, что зачастую недопустимо при практическом применении. Для предотвращения этого применяются различные добавки или используются галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путём включения в конденсацию хлорированных или бромированных мономеров, например, гексахлорэндометилентетрагидрофталевой кислоты (ГХЭМТФК), дибромнеопентилгликоля или тетрабромфталевой кислоты. Главным недостатком таких полимеров является то, что при горении они способны выделять газы, вызывающие коррозию, что может губительно сказаться на располагающейся рядом электронике.

Действие гидроксида алюминия основано на том, что под высокотемпературным воздействием выделяется вода, препятствующая горению. Для достижения эффекта требуется добавлять большие количества гидроксида алюминия: по массе 4 части к одной части ненасыщенных полиэфирных смол.

Пирофосфат аммония действует по другому принципу: он вызывает обугливание, что вместе со стеклообразным слоем пирофосфатов даёт изоляцию пластика от кислорода, ингибируя распространение огня.

Блок: 5/10 | Кол-во символов: 5182
Источник: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D1%8B

Характеристики неорганических полимеров


При создании полимерных материалов за основу качеств конечного продукта берут:

  • гибкость и эластичность;
  • прочность на сжатие, кручение, разрыв;
  • агрегатное состояние; температурная стойкость;
  • электропроводность;
  • способность пропускать свет и т.д.

при изготовлении берут чистое вещество, подвергают его специфическим процессам полимеризации, и на выходе получают синтетические (неорганические) полимеры, которые:

  1. Выдерживают запредельные температуры.
  2. Способны принимать изначальную форму после деформации под действием внешних механических сил.
  3. Становятся стеклообразными при нагревании до критической температуры.
  4. Способны менять структуру при переходе от объемной к плоскостной, чем обеспечивается вязкость.

Способность преобразовываться используется при формовом литье. После остывания неорганические полимеры твердеют, и приобретают также различные качества от прочного твердого до гибкого, эластичного. При этом обеспечивается экологическая безопасность, чем не может похвастаться обычный пластик. Полимерные материалы не вступают в реакцию с кислородом, а прочные связи исключают высвобождение молекул.

Блок: 5/7 | Кол-во символов: 1159
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Наука о полимерах

Наука о полимерах стала развиваться как самостоятельная область знания к началу Второй мировой войны и сформировалась как единое целое в 50-х годах XX столетия, когда была осознана роль полимеров в развитии технического прогресса и жизнедеятельности биологических объектов. Она тесно связана с физикой, физической, коллоидной и органической химией и может рассматриваться как одна из базовых основ современной молекулярной биологии, объектами изучения которой являются биополимеры.

Блок: 7/10 | Кол-во символов: 501
Источник: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D1%8B

Особые свойства, применяемые человеком


Суть в том, что в результате синтеза образуются макромолекулы объемного (трехмерного) типа. Прочность обеспечивается сильными связями и структурой. Как химический элемент неорганические полимеры ведут себя аморфно, и не вступают в реакцию с другими элементами и соединениями. Это особенность позволяет использовать их в химической промышленности, медицине, при производстве продуктов питания.

Термическая стойкость превышает все показатели, которыми обладают природные материалы. Если волокна используются для формирования армированного каркаса, то такая конструкция выдерживает на воздухе температуру до 220 градусов. А ели речь идет о борном материале, то предел температурной прочности поднимается до 650 градусов. Именно поэтому полеты в космос без полимерсан были бы невозможными.

Но это если говорить о качествах, превосходящих природные. Те же изделия, которые изготовлены из этих соединений, которые похожи по качеству к натуральным, имеют особое значение для человека. Это дает возможность снизить стоимость одежды, заменив, например, кожу. При этом внешних отличий практически нет.

В медицине на неорганические полимеры возлагаются особые надежды. Их этих материалов планируется изготавливать искусственные ткани и органы, протезы и т.д. Химическая устойчивость позволяет обрабатывать изделия активными веществами, что обеспечивает стерильность. Инструмент становится долговечным, полезным и безопасным для человека.

Так, интерьер, созданный с применением полимерных материалов пожарно безопасен. Большинство макромолекул формируют предметы, которые не горят, не плавятся, а значит, при нагревании не выделяют угарный газ. А те, которые имеют малый вес незаменимы в авиастроении, тем более, что они прочнее и дешевле натуральных.

По сей день учеными ведутся работы по созданию новых полимерных материалов. А те, которые уже применяются, требуют изучения. Свойства некоторых из них до конца не раскрыты. Разработка самой методологии – очередной шаг прогресса. Цель создателей – улучшить качества изделий, и сделать жизнь человека более комфортной.

:

/5 — голосов

Блок: 7/7 | Кол-во символов: 2131
Источник: https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html

Литература

  • Виноградова С. В., Васнев В. А. Поликонденсационные процессы и полимеры. : М.: МАИК «Наука/Интерпериодика», 2000, 372 с.
  • Волынский, Александр Львович. Как смешать полимеры? // Природа. — 2014. — № 3. — С. 44−52.
  • Коршак В. В., Виноградова С. В. Равновесная поликонденсация. , М.: Наука, 1968.
  • Коршак В. В., Виноградова С. В. Неравновесная поликонденсация. , М.: Наука, 1972.
  • Кривошей В. Н. Тара из полимерных материалов, М., 1990.
  • Махлис Ф. А. Федюкин Д. Л., Терминологический справочник по резине, М., 1989.
  • Тагер А. А. Физико-химия полимеров, М.: Научный мир, 2007.;
  • Шефтель В. О. Вредные вещества в пластмассах, М., 1991.
  • Энциклопедии полимеров, т. 1 — 3, гл. ред. В. А. Каргин, М., 1972—1977.

Блок: 10/10 | Кол-во символов: 706
Источник: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D1%8B

Кол-во блоков: 16 | Общее кол-во символов: 20565
Количество использованных доноров: 3
Информация по каждому донору:

  1. http://lkmprom.ru/clauses/entsiklopediya/polimery-/: использовано 2 блоков из 3, кол-во символов 5484 (27%)
  2. https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B8%D0%BC%D0%B5%D1%80%D1%8B: использовано 5 блоков из 10, кол-во символов 8892 (43%)
  3. https://prompriem.ru/litejnoe-proizvodstvo/neorganicheskie-polimery.html: использовано 6 блоков из 7, кол-во символов 6189 (30%)



Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий