Коэффициент жесткости пружины — определение, формулы, измерение

Рано или поздно при изучении курса физики ученики и студенты сталкиваются с задачами на силу упругости и закон Гука, в которых фигурирует коэффициент жесткости пружины. Что же это за величина, и как она связана с деформацией тел и законом Гука?


Блок: 1/7 | Кол-во символов: 250
Источник: https://LivePosts.ru/articles/education-articles/fizika/kak-najti-koeffitsient-zhyostkosti-pruzhiny-formula-opredelenie

Определение и свойства

Коэффициент упругости по определению равен силе упругости, делённой на изменение длины пружины: Коэффициент упругости зависит как от свойств материала, так и от размеров упругого тела. Так, для упругого стержня можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ), записав коэффициент упругости как Величина называется модулем Юнга и, в отличие от коэффициента упругости, зависит только от свойств материала стержня.

Блок: 2/6 | Кол-во символов: 478
Источник: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D1%83%D0%BF%D1%80%D1%83%D0%B3%D0%BE%D1%81%D1%82%D0%B8

Типы пружин


Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Блок: 2/5 | Кол-во символов: 1113
Источник: https://spravochnick.ru/fizika/zhestkost_pruzhiny_formula/

Определение и формула жесткости пружины

При рассмотрении того, что такое коэффициент жесткости пружины следует уделить внимание понятию упругости. Для ее обозначения применяется символ F. При этом сила упругости пружины характеризуется следующими особенностями:

  1. Проявляется исключительно при деформации тела и исчезает в случае, если деформация пропадает.
  2. При рассмотрении, что такое жесткость пружины следует учитывать, после снятия внешней нагрузки тело может восстанавливать свои размеры и форму, частично или полностью. В подобном случае деформация считается упругой.

Не стоит забывать о том, что жесткость – характеристика, свойственная упругим телам, способным деформироваться. Довольно распространенным вопросом можно назвать то, как обозначается жесткость пружины на чертежах или в технической документации. Чаще всего для этого применяется буква k.

Слишком сильная деформация тела становится причиной появления различных дефектов. Ключевыми особенностями можно назвать следующее:

  1. Деталь может сохранять свои геометрические параметры при длительной эксплуатации.
  2. При увеличении показателя существенно снижается сжатие пружины под воздействие одинаковой силы.
  3. Наиболее важным параметром можно назвать коэффициент жесткости. Он зависит от геометрических показателей изделия, типа применяемого материала при изготовлении.

Довольно большое распространение получили красные пружины и другого типа. Цветовое обозначение применяется в случае производства автомобильных изделий. Для расчета применяется следующая формула: k=Gd 4 /8D 3 n. В этой формуле указываются нижеприведенные обозначения:

  1. G – применяется для определения модуля сдвига. Стоит учитывать, что это свойство во многом зависит от применяемого материала при изготовлении витков.
  2. d – диаметральный показатель проволоки. Она производится путем проката. Этот параметр указывается также в технической документации.
  3. D – диаметр создаваемых витков при накручивании проволоки вокруг оси. Он подбирается в зависимости от поставленных задач. Во многом диаметр определяет то, какая нагрузка оказывается для сжатия устройства.
  4. n – число витков. Этот показатель может варьировать в достаточно большом диапазоне, также влияет на основные эксплуатационные характеристики изделия.

Рассматриваемая формула применяется в случае расчета коэффициента жесткости для цилиндрических пружин, которые устанавливаются в самых различных механизмах. Подобная единица измеряется в Ньютонах. Коэффициент жесткости для стандартизированных изделий можно встретить в технической литературе.

Блок: 2/7 | Кол-во символов: 2525
Источник: https://MyTooling.ru/instrumenty/vyvod-opredelenie-zhestkosti-pruzhiny

Физические характеристики пружин


Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость — способность сопротивляться деформации:

  1. материал; пружины чаще всего изготавливают из стальной проволоки, причем сталь в них применялася особая, ее характеризует среднее или высокое содержание углерода, низкое содержание других примесей (низколегированный сплав) и особая термообработка (закалка), придающая материалу дополнительную упругость;
  2. диаметр проволоки; чем он меньше, тем эластичнее пружина, но тем меньше ее способность запасать энергию; пружины сжатия изготавливают, как правило, из более толстой проволоки, чем пружины растяжения;
  3. форма сечения проволоки; не всегда проволока, из которой намотана пружина, имеет круглое сечение; уплощенное сечение имеют пружины сжатия, чтобы при максимальном сокращении длины (виток «садится» на соседний виток) конструкция была более устойчивой;
  4. длина и диаметр пружины; длину пружины следует отличать от длины проволоки, из которой она намотана; эти два параметра согласуются через количество витков и диаметр пружины, который, в свою очередь, не следует путать с диаметром проволоки.

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Блок: 3/5 | Кол-во символов: 1530
Источник: https://spravochnick.ru/fizika/zhestkost_pruzhiny_formula/

Расчет пружины сжатия из проволоки прямоугольного сечения

Жесткость пружины из проволоки или прутка прямоугольного сечения при тех же габаритах, что и из круглой проволоки может быть гораздо больше. Соответственно и сила сжатия пружины может быть больше.

Основным отличием в расчете, как вы уже догадались, является определение жесткости витка (C 1 ) , задающей жесткость пружины (C ) в целом.

Далее представлены скриншот программы и формулы для цилиндрической стальной пружины из прямоугольной проволоки, у которой поджаты по ¾ витка с каждого конца и опорные поверхности отшлифованы на ¾ длины окружности.

Внимание!!!

После выполнения расчета по программе выполняйте проверку касательных напряжений!!!

4. I =(D 1 / B ) -1

5. При 1/3: Y =5,3942*(H / B ) 2 -0,3572*(H /B )+0,5272

При 1: Y =5,4962*(H / B ) (-1.715)

При 2H / B : Y =3 ,9286 *(H / B ) (-1. 2339 )

6. При H B : C 1 =(78500* H 4 )/(Y * (D 1 B ) 3)

При H > B : C 1 =(78500* B 4 )/(Y * (D 1 B ) 3)

8. T nom =1,25*(F 2 / C 1 )+H

9. T max =π*(D 1 B )*tg (10 ° )

11. S 3 = T H

12. F 3 = C 1 * S 3

14. N расч =(L 2 H )/(H +F 3 / C 1 F 2 / C 1 )

16. C = C 1 / N

17. L 0 = N * T + H

18. L 3 = N * H + H

19. F 2 = C * L 0 C * L 2

21. F 1 = C * L 0 C * L 1

22. N 1 = N +1,5

23. A =arctg (T /(π *(D 1 H )))

24. L разв =π* N 1 *(D 1 H )/cos (A )

25. Q =H *B * L разв *7,85/10 6

Блок: 3/6 | Кол-во символов: 1488
Источник: https://svetvam.ru/diy/formula-udlineniya-pruzhiny-kak-naiti-koefficient-zh-stkosti.html

Жёсткость деформируемых тел при их соединении


Параллельное соединение пружин.

Последовательное соединение пружин.

При соединении нескольких упруго деформируемых тел (далее для краткости — пружин) общая жёсткость системы будет меняться. При параллельном соединении жёсткость увеличивается, при последовательном — уменьшается.

Параллельное соединение

При параллельном соединении пружин с жёсткостями, равными жёсткость системы равна сумме жёсткостей, то есть

Последовательное соединение

При последовательном соединении пружин с жёсткостями, равными общая жёсткость определяется из уравнения:

Блок: 3/6 | Кол-во символов: 601
Источник: https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D1%83%D0%BF%D1%80%D1%83%D0%B3%D0%BE%D1%81%D1%82%D0%B8

Расчет в Excel жесткости витка пружины

Жесткость витка пружины – это «краеугольный камень в фундаменте» расчетов, зависящий лишь от модуля сдвига материала, из которого пружина навита и её геометрических размеров.

C 1 = G * X 4 /(Y *(D 1 B ) 3 )

В этой формуле:

G – модуль сдвига материала проволоки

Для пружинной стали:

G ≈78500 МПа ±10%

Для пружинной бронзы:

G ≈45000 МПа ±10%

X – минимальный размер сечения проволоки

Для круглой проволоки – это её диаметр:

X = D

Для прямоугольной проволоки:

X = H при H B

X = B при B H

H – высота сечения проволоки в направлении параллельном оси навивки пружины

B – ширина сечения проволоки в направлении перпендикулярном оси навивки пружины

Для круглой проволоки:

H = B = D

D 1 — наружный диаметр пружины

(D 1 B ) – средний диаметр пружины

Y – параметр жесткости сечения проволоки

Для круглой проволоки:

Y = 8

Для прямоугольной проволоки:

Y = f (H / B )

Что это за функция — f (H / B ) ? В литературе она всегда задана в виде таблицы, что не всегда удобно, особенно для промежуточных значений H / B , которых попросту нет.

Выполним в MS Excel табличных данных в первых двух столбцах аналитическими функциями, разбив для повышения точности табличные значения на три группы.

На графиках, представленных ниже, Excel нашел три уравнения для определения параметра Y при различных значениях аргумента — отношения высоты проволоки к ширине — H / B . Красные точки – это заданные значения из таблицы (столбец №2), черные линии – это графики найденных аппроксимирующих функций. Уравнения этих функций Excel вывел непосредственно на поля графиков.

В таблице в столбце №3 размещены посчитанные по полученным формулам значения параметра жесткости сечения проволоки Y , а в столбцах №4 и №5 — абсолютные Δ абс и относительные Δ отн погрешности аппроксимации.

Как видно из таблицы и графиков полученные уравнения весьма точно замещают табличные данные! Величина достоверности аппроксимации R 2 очень близка к 1 и относительная погрешность не превышает 2,7%!

Применим на практике полученные результаты.

Блок: 2/6 | Кол-во символов: 2101
Источник: https://svetvam.ru/diy/formula-udlineniya-pruzhiny-kak-naiti-koefficient-zh-stkosti.html

Коэффициент жесткости соединений пружин


Приведенный выше показатель коэффициента жесткости детали при параллельном или последовательном соединении определяет многие характеристики соединения. Довольно часто проводится определение тому, чему равно удлинение пружины. Среди особенностей параллельного или последовательного соединения можно отметить нижеприведенные моменты:

  1. При параллельном подключении удлинение обоих изделий будет равным. Не стоит забывать о том, что оба варианта должны характеризоваться одинаковой длиной в свободном положении. При последовательном показатель увеличивается в два раза.
  2. Свободное положение – ситуация, в которой деталь находится без прикладывания нагрузки. Именно оно в большинстве случаев учитывается при проведении расчетов.
  3. Коэффициент жесткости изменяется в зависимости от применяемого способа подсоединения. В случае параллельного соединения показатель увеличивается в два раза, при последовательном уменьшается.

Для проведения расчетов нужно построить схему подключения всех элементов. Основание представлено линией со штриховкой, изделие обозначается схематически, а тело в упрощенном виде. Кроме этого, от упругой деформации во многом зависит кинетическая и другая энергия.

Блок: 4/7 | Кол-во символов: 1218
Источник: https://MyTooling.ru/instrumenty/vyvod-opredelenie-zhestkosti-pruzhiny

Коэффициент жесткости цилиндрической пружины

На практике и в физике довольно большое распространение получили именно цилиндрические пружины. Их ключевыми особенностями можно назвать следующие моменты:

  1. При создании указывается центральная ось, вдоль которой и действует большинство различных сил.
  2. При производстве рассматриваемого изделия применяется проволока определенного диаметра. Она изготавливается из специального сплава или обычных металлов. Не стоит забывать о том, что материал должен обладать повышенной упругостью.
  3. Проволока накручивается витками вдоль оси. При этом стоит учитывать, что они могут быть одного или разного диаметра. Довольно большое распространение получил вариант исполнения цилиндрического типа, но большей устойчивостью характеризуется цилиндрический вариант исполнения, в сжатом состоянии деталь обладает небольшой толщиной.
  4. Основными параметрами можно назвать больший, средний и малый диаметр витков, диаметр проволоки, шаг расположения отдельных колец.

Не стоит забывать о том, что выделяют два типа деталей: сжатия и растяжения. Их коэффициент жесткости определяется по одной и той же формуле. Разница заключается в следующем:

  1. Вариант исполнения, рассчитанный на сжатие, характеризуется дальним расположением витков. За счет расстояние между ними есть возможность сжатия.
  2. Модель, рассчитанная на растяжение, имеет кольца, расположенные практически вплотную. Подобная форма определяет то, что при максимальная сила упругости достигается при минимальном растяжении.
  3. Также есть вариант исполнения, который рассчитан на кручение и изгиб. Подобная деталь рассчитывается по определенным формулам.

Расчет коэффициента цилиндрической пружины может проводится при использовании ранее указанной формулы. Она определяет то, что показатель зависит от следующих параметров:

  1. Наружного радиуса колец. Как ранее было отмечено, при изготовлении детали применяется ось, вокруг которой проводится накручивание колец. При этом не стоит забывать о том, что выделяют также средний и внутренний диаметр. Подобный показатель указывается в технической документации и на чертежах.
  2. Количества создаваемых витков. Этот параметр во многом определяет длину изделия в свободном состоянии. Кроме этого, количество колец определяет коэффициент жесткость и многие другие параметры.
  3. Радиуса применяемой проволоки. В качестве исходного материала применяется именно проволока, которая изготавливается из различных сплавов. Во многом ее свойства оказывают влияние на качества рассматриваемого изделия.
  4. Модуля сдвига, который зависит от типа применяемого материала.

Коэффициент жесткости считается одним из наиболее важных параметров, который учитывается при проведении самых различных расчетов.

Блок: 5/7 | Кол-во символов: 2693
Источник: https://MyTooling.ru/instrumenty/vyvod-opredelenie-zhestkosti-pruzhiny

Это соотношение выражает суть закона Гука. А значит, чтобы найти коэффициент жесткостипружины, следует силу растяжения тела разделить на удлинение данной пружины


При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества.

Закон Гука может быть обобщен и на случай более сложных деформаций. В технике часто применяются спиралеобразные пружины (рис. 1.12.3). Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Закрепите вертикально один конец пружины, второй же ее конец оставьте свободным. Жесткость – это способность детали или конструкции противодействовать приложенной к нему внешней силе, по возможности сохраняя свои геометрические параметры.

Различные пружины предназначены для работы на сжатие, растяжение, кручение или изгиб. В школе на уроках физики детей учат определять коэффициентжесткости пружины, работающей на растяжение. Для этого на штативе вертикально подвешивается пружина в свободном состоянии.

Вычисление силы Архимеда. Количество теплоты и калориметр. Теплота плавления/кристаллизации и парообразования/конденсации. Теплота сгорания топлива и КПД тепловых двигателей. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Поэтому ее часто называют силой нормального давления. Деформация растяжения пружины. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала. С точки зрения классической физики пружину можно назвать устройством, которое накапливает потенциальную энергию путем изменения расстояния между атомами материала, из которого эта пружина сделана.

Блок: 5/6 | Кол-во символов: 2054
Источник: https://svetvam.ru/diy/formula-udlineniya-pruzhiny-kak-naiti-koefficient-zh-stkosti.html

Примеры задач на нахождение жесткости

Задача 1

На пружину длиной 10 см действует сила F = 100 Н. Длина растянутой пружины составила 14 см. Найти коэффициент жесткости.

  1. Рассчитываем длину абсолютного удлинения: x = 14—10 = 4 см = 0,04 м.
  2. По формуле находим коэффициент жесткости: k = F/x = 100 / 0,04 = 2500 Н/м.

Ответ: жесткость пружины составит 2500 Н/м.

Задача 2

Груз массой 10 кг при подвешивании на пружину растянул ее на 4 см. Рассчитать, на какую длину растянет ее другой груз массой 25 кг.

  1. Найдем силу тяжести, деформирующей пружину: F = mg = 10 · 9.8 = 98 Н.
  2. Определим коэффициент упругости: k = F/x = 98 / 0.04 = 2450 Н/м.
  3. Рассчитаем, с какой силой действует второй груз: F = mg = 25 · 9.8 = 245 Н.
  4. По закону Гука запишем формулу для абсолютного удлинения: x = F/k.
  5. Для второго случая подсчитаем длину растяжения: x = 245 / 2450 = 0,1 м.

Ответ: во втором случае пружина растянется на 10 см.

Блок: 6/7 | Кол-во символов: 919
Источник: https://LivePosts.ru/articles/education-articles/fizika/kak-najti-koeffitsient-zhyostkosti-pruzhiny-formula-opredelenie

Единицы измерения


Основной единицей измерения коэффициента жесткости в системе СИ является:

   

В СГС:

= дин/см

Блок: 5/6 | Кол-во символов: 128
Источник: http://ru.solverbook.com/spravochnik/koefficienty/koefficient-zhestkosti-pruzhiny/

Видео

Из этого видео вы узнаете, как определить жесткость пружины.

Блок: 7/7 | Кол-во символов: 69
Источник: https://LivePosts.ru/articles/education-articles/fizika/kak-najti-koeffitsient-zhyostkosti-pruzhiny-formula-opredelenie

Особенности расчета жесткости соединений пружин

Приведенная выше информация указывает на то, что коэффициент жесткости является довольно важным параметром, который должен рассчитываться при выборе наиболее подходящего изделия и во многих других случаях. Именно поэтому довольно распространенным вопросом можно назвать то, как найти жесткость пружины. Среди особенностей соединения отметим следующее:

  1. Провести определение растяжения пружины можно при вычислении, а также на момент теста. Этот показатель может зависеть в зависимости от проволоки и других параметров.
  2. Для расчетов могут применяться самые различные формулы, при этом получаемый результат будет практически без погрешностей.
  3. Есть возможность провести тесты, в ходе которых и выявляются основные параметры. Определить это можно исключительно при применении специального оборудования.

Как ранее было отмечено, выделяют последовательный и параллельный метод соединения. Оба характеризуются своими определенными особенностями, которые должны учитываться.

В заключение отметим, что рассматриваемая деталь является важной частью конструкции различных механизмов. Неправильный вариант исполнения не сможет прослужить в течение длительного периода. При этом не стоит забывать о том, что слишком сильная деформация становится причиной ухудшения эксплуатационных характеристик.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Блок: 7/7 | Кол-во символов: 1412
Источник: https://MyTooling.ru/instrumenty/vyvod-opredelenie-zhestkosti-pruzhiny

Кол-во блоков: 19 | Общее кол-во символов: 18579
Количество использованных доноров: 6
Информация по каждому донору:

  1. https://MyTooling.ru/instrumenty/vyvod-opredelenie-zhestkosti-pruzhiny: использовано 4 блоков из 7, кол-во символов 7848 (42%)
  2. http://ru.solverbook.com/spravochnik/koefficienty/koefficient-zhestkosti-pruzhiny/: использовано 1 блоков из 6, кол-во символов 128 (1%)
  3. https://LivePosts.ru/articles/education-articles/fizika/kak-najti-koeffitsient-zhyostkosti-pruzhiny-formula-opredelenie: использовано 3 блоков из 7, кол-во символов 1238 (7%)
  4. https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D1%83%D0%BF%D1%80%D1%83%D0%B3%D0%BE%D1%81%D1%82%D0%B8: использовано 2 блоков из 6, кол-во символов 1079 (6%)
  5. https://spravochnick.ru/fizika/zhestkost_pruzhiny_formula/: использовано 2 блоков из 5, кол-во символов 2643 (14%)
  6. https://svetvam.ru/diy/formula-udlineniya-pruzhiny-kak-naiti-koefficient-zh-stkosti.html: использовано 3 блоков из 6, кол-во символов 5643 (30%)



Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий

Ваш адрес email не будет опубликован.