Кручением называется такой вид деформации бруса, при котором в его поперечных сечениях возникает только один внутренний силовой фактор – крутящий момент T.
Брусья, испытывающие кручение, принято называть валами.
Источник: https://isopromat.ru/sopromat/teoria/kruchenie
Внутренний крутящий момент
Внутренние скручивающие моменты появляются под действием внешних крутящих моментов mi, расположенных в плоскостях, перпендикулярных к продольной оси бруса.
Скручивающие моменты передаются на вал в местах посадки зубчатых колес, шкивов ременных передач и т.п.
Величина крутящего момента в любом сечении вала определяется методом сечений:
т.е. крутящий момент численно равен алгебраической сумме скручивающих моментов mi, расположенных по одну сторону от рассматриваемого сечения.
Правило знаков внутренних скручивающих моментов:
Положительными принимаются внутренние моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки, при рассмотрении со стороны отброшенной части вала.
В технике наиболее широко используются валы круглого поперечного сечения.
Теория кручения круглых валов основана на следующих гипотезах:
- поперечное сечение, плоское до деформации вала, остается плоским и после деформации;
- радиусы, проведенные мысленно в любом поперечном сечении, в процессе деформации вала не искривляются.
Источник: https://isopromat.ru/sopromat/teoria/kruchenie
Сдвиг
Сдвигом называют такую деформацию твердого тела, при которой все его плоские слои, параллельные некоторой плоскости сдвига, не искривляясь и не изменяясь в размерах, смещаются параллельно друг другу (рис. 3).
Рис. 3.
Деформация сдвига возникает под действием сил, приложенных к двум противоположным граням тела так, как показано на рисунках 3; 4. Эти силы вызывают смещение слоев тела, параллельных направлению сил. Расстояние между слоями не изменяется. Любой прямоугольный параллелепипед, мысленно выделенный в теле, превращается в наклонный.
Рис. 4.
Мерой деформации сдвига является угол сдвига γ — угол наклона вертикальных граней (рис. 5).
Рис. 5.
Сдвиг происходит под действием касательной силы F, приложенной к грани ВС, параллельной плоскости сдвига. Грань АД, параллельная ВС, закреплена неподвижно.
Так как угол мал, формулу можно записать в виде:
где СС1 = D X — абсолютный сдвиг, γ — угол сдвига, называемый также относительным сдвигом, выражается в радианах.
По закону Гука относительный сдвиг γ пропорционален касательному напряжению τ = F/S, где S — площадь поверхности грани ВС, т.е.
τ = F / S = Gg
где G — модуль сдвига.
Закон Гука для малой деформации сдвига выражается формулой:
Коэффициент G, зависящий от материала тела, называется модулем сдвига и характеризует упругие свойства тела при деформации сдвига. Например, для стального образца G = 76 ГПа.
Модуль сдвига равен касательному напряжению, которое возникло бы в образце при относительном сдвиге, равном 1 (при условии, что закон Гука выполняется).
Деформацию сдвига испытывают, например, заклепки и болты, соединяющие металлические конструкции. Сдвиг при больших углах приводит к разрушению тела — срезу. Срез происходит при работе ножниц, пилы и др.
Обратите внимание на принципиальное отличие модуля кручения от модуля сдвига, который зависит только от материала. Модуль кручения зависит не только от материала, но ещё и от диаметра и от длины цилиндра.
Дата добавления: 2015-04-01; 8147; Опубликованный материал нарушает авторские права? | Защита персональных данных |
Не нашли то, что искали? Воспользуйтесь поиском:
Источник: https://studopedia.ru/7_14454_kruchenie.html
Это интересно: Деформация изгиба — определение, формула, примеры
Напряжения при кручении
В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
где Iρ — полярный момент инерции.
Эпюра касательных напряжений при кручении имеет следующий вид:
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Здесь:
— полярный момент сопротивления.
Геометрические характеристики сечений:
а) для полого вала:
б) для вала сплошного сечения (c=0)
в) для тонкостенной трубы (t0,9)
где
— радиус срединной поверхности трубы.
Источник: https://isopromat.ru/sopromat/teoria/kruchenie
Напряжения при кручении
Распределение касательных напряжений при кручении
Вращающийся стержень, работающий на кручение, называют валом. Стержень, используемый как упругий элемент, который работает на скручивание, называется торсионом. Касательные напряжения , возникающие в условиях кручения, определяются по формуле:
,
где r — расстояние от оси кручения.
Очевидно, что касательные напряжения достигают наибольшего значения на поверхности вала при и при максимальном крутящем моменте , то есть
,
где Wp — полярный момент сопротивления.
Это даёт возможность записать условие прочности при кручении в таком виде:
.
Используя это условие, можно или по известным силовым факторам, которые создают крутящий момент Т, найти полярный момент сопротивления и далее, в зависимости от той или иной формы, найти размеры сечения, или наоборот — зная размеры сечения, можно вычислить наибольшую величину крутящего момента, которую можно допустить в сечении, которое в свою очередь, позволит найти допустимые величины внешних нагрузок.
Источник: https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_(%D0%B4%D0%B5%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%8F)
Количество использованных доноров: 3
Информация по каждому донору:
- https://isopromat.ru/sopromat/teoria/kruchenie: использовано 3 блоков из 4, кол-во символов 2001 (39%)
- https://ru.wikipedia.org/wiki/%D0%9A%D1%80%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_(%D0%B4%D0%B5%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D1%8F): использовано 1 блоков из 2, кол-во символов 1022 (20%)
- https://studopedia.ru/7_14454_kruchenie.html: использовано 1 блоков из 2, кол-во символов 2143 (41%)